she/her ENTJ ace cis

Welcome Traveler!

Feel free to rampage through my lines, breathe violently my hues and sift through my fleeting bouts of hopeful augmentation.

Art Tag : patomatic

My Art Blog - Patomatica

Commissions are currently open.

 

clusterpod:

Mycena interrupta

Myrtle Forest, Collinsvale, Tasmania

clusterpod:

Mycena interrupta

Myrtle Forest, Collinsvale, Tasmania

thenewenlightenmentage:

Monster black hole found in tiny galaxy
Discovery hints at twice as many supermassive black holes in the nearby Universe as previously thought.
Astronomers have for the first time found strong evidence for a giant black hole in a Lilliputian galaxy. The finding suggests that supermassive black holes could be twice as numerous in the nearby Universe as previously estimated, with many of them hidden at the centres of small, seemingly nondescript galaxies known as ultra-compact dwarfs.
Continue Reading

thenewenlightenmentage:

Monster black hole found in tiny galaxy

Discovery hints at twice as many supermassive black holes in the nearby Universe as previously thought.

Astronomers have for the first time found strong evidence for a giant black hole in a Lilliputian galaxy. The finding suggests that supermassive black holes could be twice as numerous in the nearby Universe as previously estimated, with many of them hidden at the centres of small, seemingly nondescript galaxies known as ultra-compact dwarfs.

Continue Reading

fuckyeahaquaria:


"A deep-sea Chimaera. Chimaera’s are most closely related to sharks, although their evolutionary lineage branched off from sharks nearly 400 million years ago, and they have remained an isolated group ever since. Like sharks, chimaera’s are cartilaginous and have no real bones. The lateral lines running across this chimaera are mechano-receptors that detect pressure waves (just like ears). The dotted-looking lines on the frontal portion of the face (near the mouth) are ampullae de lorenzini and they detect perturbations in electrical fields generated by living organisms.”

(by NOAA Ocean Explorer)

fuckyeahaquaria:

"A deep-sea Chimaera. Chimaera’s are most closely related to sharks, although their evolutionary lineage branched off from sharks nearly 400 million years ago, and they have remained an isolated group ever since. Like sharks, chimaera’s are cartilaginous and have no real bones. The lateral lines running across this chimaera are mechano-receptors that detect pressure waves (just like ears). The dotted-looking lines on the frontal portion of the face (near the mouth) are ampullae de lorenzini and they detect perturbations in electrical fields generated by living organisms.”

(by NOAA Ocean Explorer)

mindblowingscience:

Next Generation Spacesuit like Second Skin

Scientists from MIT have designed a next-generation spacesuit that acts practically as a second skin, and could revolutionize the way future astronauts travel into space. (Photo : Jose-Luis Olivares/MIT)
Astronauts are used to climbing into conventional bulky, gas-pressurized spacesuits, but this new design could allow them to travel in style. Soon they may don a lightweight, skintight and stretchy garment lined with tiny, muscle-like coils. Essentially the new suit acts like a giant piece of shrink-wrap, in which the coils contract and tighten when plugged into a power supply, thereby creating a “second skin.”
"With conventional spacesuits, you’re essentially in a balloon of gas that’s providing you with the necessary one-third of an atmosphere [of pressure,] to keep you alive in the vacuum of space," lead researcher Dava Newman, a professor of aeronautics and astronautics and engineering systems at MIT, said in astatement.
"We want to achieve that same pressurization, but through mechanical counterpressure - applying the pressure directly to the skin, thus avoiding the gas pressure altogether. We combine passive elastics with active materials. … Ultimately, the big advantage is mobility, and a very lightweight suit for planetary exploration."
Newman, who has worked for the past decade on a design for the next-generation spacesuit, describes the new garment in detail in the journal IEEE/ASME: Transactions on Mechatronics.
The MIT BioSuit’s coils, which are a main feature of the outfit, are made from a shape-memory alloy (SMA). At a certain temperature, the material can “remember” and spring back to its engineered shape after being bent or misshapen.
Skintight suits are not a novel idea, but in the past scientists have always struggled with the question: how do you get in and out of a suit that is so tight? That’s where the SMAs come in, allowing the suit to contract only when heated, and subsequently stretched back to a looser shape when cooled.
Though the lightweight suit may not seem at first like it can withstand the harsh environment that is outer space, Newman and his colleagues are sure that the BioSuit would not only give astronauts much more freedom during planetary exploration, but it would also fully support these space explorers.
Newman and his team are not only working on how to keep the suit tight for long periods of time, but also believe their design could be applied to other attires, such as athletic wear or military uniforms.
"An integrated suit is exciting to think about to enhance human performance," Newman added. "We’re trying to keep our astronauts alive, safe, and mobile, but these designs are not just for use in space."

mindblowingscience:

Next Generation Spacesuit like Second Skin

Scientists from MIT have designed a next-generation spacesuit that acts practically as a second skin, and could revolutionize the way future astronauts travel into space. (Photo : Jose-Luis Olivares/MIT)

Astronauts are used to climbing into conventional bulky, gas-pressurized spacesuits, but this new design could allow them to travel in style. Soon they may don a lightweight, skintight and stretchy garment lined with tiny, muscle-like coils. Essentially the new suit acts like a giant piece of shrink-wrap, in which the coils contract and tighten when plugged into a power supply, thereby creating a “second skin.”

"With conventional spacesuits, you’re essentially in a balloon of gas that’s providing you with the necessary one-third of an atmosphere [of pressure,] to keep you alive in the vacuum of space," lead researcher Dava Newman, a professor of aeronautics and astronautics and engineering systems at MIT, said in astatement.

"We want to achieve that same pressurization, but through mechanical counterpressure - applying the pressure directly to the skin, thus avoiding the gas pressure altogether. We combine passive elastics with active materials. … Ultimately, the big advantage is mobility, and a very lightweight suit for planetary exploration."

Newman, who has worked for the past decade on a design for the next-generation spacesuit, describes the new garment in detail in the journal IEEE/ASME: Transactions on Mechatronics.

The MIT BioSuit’s coils, which are a main feature of the outfit, are made from a shape-memory alloy (SMA). At a certain temperature, the material can “remember” and spring back to its engineered shape after being bent or misshapen.

Skintight suits are not a novel idea, but in the past scientists have always struggled with the question: how do you get in and out of a suit that is so tight? That’s where the SMAs come in, allowing the suit to contract only when heated, and subsequently stretched back to a looser shape when cooled.

Though the lightweight suit may not seem at first like it can withstand the harsh environment that is outer space, Newman and his colleagues are sure that the BioSuit would not only give astronauts much more freedom during planetary exploration, but it would also fully support these space explorers.

Newman and his team are not only working on how to keep the suit tight for long periods of time, but also believe their design could be applied to other attires, such as athletic wear or military uniforms.

"An integrated suit is exciting to think about to enhance human performance," Newman added. "We’re trying to keep our astronauts alive, safe, and mobile, but these designs are not just for use in space."

scientificvisuals:

Close-ups of squid skin. The pigmented circles are called chromatophores. The main colors are yellow, red, and brown, but reflectors under the pigments combined with the chromatophores’ ability to change shape and size can create different colors and patterns.

Source here. Footage from John Hanlon on Science Friday.

sisyphean-revolt:

Giovanni Maria Viani (1636–1700)The Penitent Magdalene (Detail)Oil on canvas, 17th Century

sisyphean-revolt:

Giovanni Maria Viani (1636–1700)
The Penitent Magdalene (Detail)
Oil on canvas, 17th Century

(Source: greuze)

A quick note to all my followers and muties,
I hope you are well enough to feel the rain ruin your clothes and be glad that it exists. I am not here. I am not even nowhere. Please see the manual or wait for an administrator. Regular programming will commence when Pat has defeated the prince and married the dragon. In the meantime I have queued some science n science fiction (plus filler oh lucky!), please enjoy or be eaten by smurfs.
My love to you all,
Pat